Gradient Performance Checks

Jonathan J. Gilroy and John W. Dolan, BASI Northwest Laboratory, McMinnville, Oregon, USA.

Just how good are your gradients?

Gradient elution is used widely both in research and production liquid chromatography (LC) separations. For routine analysis of drugs in biological matrices, our laboratory prefers to use gradient elution rather than isocratic separations. A build-in cleaning step in part of every gradient method that finishes at a high percentage of the strong solvent and gives longer column life with “dirty” samples. Modern equipment provides an ability to generate accurate linear gradients. The test is quite simple. HPLC-grade water is placed in the A-solvent reservoir and water containing 0.1% acetone is placed in the B reservoir. The column is removed and replaced with approximately 1 m of 0.005 in. i.d. tubing. The detector wavelength is set to 265 nm, and the flow rate to 1–2 mL/min to create sufficient back pressure for reliable check valve operation.

For high-pressure mixing systems, there are just two tests. First, a series of 4 min steps is run in 10% increments (0% B, 10% B, 20% B… 100% B) plus an extra step at 45% B and 55% B. Second, a 15 min linear gradient of 0–100% B is run. For low-pressure mixing systems, an additional gradient proportioning-valve (GPV) test is added. This tests all combinations of the proportioning valves for accurate delivery.

The Test
Our semi-annual check includes measurements of flow rate, pressure decay retention reproducibility and autosampler precision. The core of the performance test, however, is a check of the system’s ability to generate accurate linear gradients. The test is quite simple. HPLC-grade water is placed in the A-solvent reservoir and water containing 0.1% acetone is placed in the B reservoir. The column is removed and replaced with approximately 1 m of 0.005 in. i.d. tubing. The detector wavelength is set to 265 nm, and the flow rate to 1–2 mL/min to create sufficient back pressure for reliable check valve operation.

For high-pressure mixing systems, there are just two tests. First, a series of 4 min steps is run in 10% increments (0% B, 10% B, 20% B… 100% B) plus an extra step at 45% B and 55% B. Second, a 15 min linear gradient of 0–100% B is run. For low-pressure mixing systems, an additional gradient proportioning-valve (GPV) test is added. This tests all combinations of the proportioning valves for accurate delivery.

For example, with a four-solvent system, the test would place inlet lines for A and B in the water reservoir and C and D in the mobile phase reservoir. A series of 2 min steps is run from 50:50 A–B to 90:10 A–C to 50:50 A–B to 90:10 A–D to 50:50 A–B plus 15% A-D to 50:50 A–B for each solvent. Until all valve combinations have been run the 50:50 A–B (water only) serves as a baseline, with the 90:10 mixtures generating steps containing UV-absorbing solvent.

GPV Results
When low-pressure mixing systems are tested, it is usually easiest to run the proportioning-valve test before the other gradient performance tests. The results of the GPV test are shown graphically in Figure 1 and Table 1, Test 2. Visual examination of Figure 1 shows that the first step (A–C) is lower than the remaining steps and the second step (A–D) is higher. To pass the test, the difference between the maximum and minimum plateau heights must be less than 5% of the average height. Table 1, Test 2 shows that the limit is exceeded. In our experience, the 5% limit is liberal; passing results are generally ≤ 1%.

When a failed test is observed, troubleshooting should be undertaken to identify and correct the root cause. Three areas are most likely to cause problems: general pump performance, blockage of inlet line frits and proportioning-valve failure. General pump reliability problems can be the result of improper degassing of mobile phase components, check-valve problems or pump seals. We degassed the mobile phase again using helium sparging. The check valves were removed from the system and sonicated in methanol, a...
technique that will usually remove particulate matter that might cause check-valve leakage. The pump seals had been replaced recently, so this was not a likely failure point. The test was run, and the results showed no significant improvement.

If an inlet line frit were partially blocked, it could restrict the flow of solvent from the mobile phase reservoir to the proportioning valves and result in poor proportioning performance. The easiest way to check the inlet line valves is to remove the connection at the proportioning valve and observe if solvent syphons freely through the tube from the reservoir. We like to see at least 10 mL/min flowing by syphon action to ensure that adequate solvent is available at the proportioning valves. There was no indication of restriction in the test instrument, so this was dismissed as a cause.

The remaining potential problem area was the proportioning-valve assembly. Failure of proportioning valves can occur in two major ways. First, the failure of a seal or other mechanical failure will require valve replacement. If, on the other hand, the failure is related to improper control or calibration. At this point, the entire proportioning-valve assembly was replaced and the calibration routine was repeated. The results are shown in Table 1. It can be seen that the variability between the different valve combinations improved dramatically when compared with the earlier tests (Tests 2 and 3). The results also compare favourably with the proportioning-valve performance of the different valve combinations. The step test passed under the initial proportioning-valve performance (corresponding to the GPV results of Test 2). Visually, the steps look good. They should appear as flat steps with a slight rounding at the edge of each step. The step size was calculated for each step and compared to the theoretical (programmed) value. The largest error was 0.4%, which is less than the 1% allowable maximum, so the step test passed under the initial (Test 2) conditions.

Gradient Linearity Results

The results for the linear gradient plot are shown in Figure 3. The plot should appear as a straight ramp between the initial and final plateaus. Note the offsets in the plot (arrows in Figure 3) at approximately 25%, 50% and 75% B. Some low-pressure mixing systems change the mobile phase proportioning algorithm in different parts of the gradient to optimize mixing of different proportions of mobile phase components. For the test system used here, it appears that the changes occur at the noted points on the curve. It is interesting to note that although the step test passed the acceptance criteria, the resulting linear gradient is not satisfactory. This required further investigation.

Step Test Revisited

The suspect region of the gradient plot of Figure 3 was examined more closely. The system was programmed to produce 1% steps between 45% and 55% B. The plot of the resulting run is shown in Figure 4. It is obvious that the step from 50% to 51% is in error by about half. Although this is not the 1% acceptance criteria for step accuracy, there definitely something wrong. The error of the step sizes is as important as the absolute accuracy.

Following replacement of the proportioning-valve assembly, the step sizes evened out and the extra bumps in the linear gradient plot disappeared.

Dwell Volume Determination

The dwell volume of the LC system is the volume from the points at which the solvents are mixed until they reach the head of the column. For a low-pressure mixing system, this includes the proportioning-valve assembly, the mixer (if separate) and all connecting tubing between the proportioning valves and the head of the column, the pump head volume and the injector loop volume. The presence of system dwell volume results in the appearance of an isocratic hold step at

One might question the value of the step test, which in the present case passed specifications, even though the system was not operating properly.

The data showed us that part of the initial proportioning-valve performance problem was due to calibration because a dramatic improvement was shown after the first recalibration. However, the inability of the calibration routine to further improve performance indicated that the remaining problem was not related to control or calibration. At this point, the entire proportioning-valve assembly was replaced and the calibration routine was repeated. The results are shown in Table 1. It can be seen that the variability between the different valve combinations improved dramatically when compared with the earlier tests (Tests 2 and 3). The results also compare favourably with the proportioning-valve performance of the different valve combinations.

Figure 1: GPV test results for the failed test of Test 2. Baseline is generated by 50:50 A–B and the remaining plateau values are 90:10 A–C, A–D, B–C, and B–D from left to right. See text for details.

Figure 2: Plot of step test using faulty proportioning valves; conditions of Test 2.

Figure 3: Plot of linear gradient with faulty proportioning valves; conditions of Test 2. Arrows indicate deviations from linear behaviour.
the beginning of every gradient. Because the dwell volume can vary from one LC system to the next and can influence retention time, particularly of early-eluted compounds, it is important to know the dwell volume of every LC system. Differences in dwell volume are a primary source of difficulty in transferring gradient methods from one LC system to another.

System dwell volume is determined easily from the linear gradient plot obtained during the gradient tests, since we measure it with each semi-annual calibration check. Measure the dwell volume as follows. First, find the point on the gradient curve (the linear portion of Figure 3) at which the gradient has reached 50% of the maximum deflection. From the “retention” time at 50%, subtract half the gradient time. The remaining time is the dwell time, which can be converted to the dwell volume by multiplying by the flow-rate. For the test system, the 50% point was reached at 8.43 min. Half the gradient time was 15 min/2 = 7.5 min, so the dwell time was 8.34 – 7.50 = 0.84 min. This converts to 0.93 mL at a flow-rate of 1.0 mL/min. This value is fairly typical for a well-plumbed, modern, low-pressure mixing LC system.

Conclusions

Let’s examine the results obtained from the various tests and see what we can learn from this process. In the present case, the proportioning-valve test plus visual inspection of the linear gradient pointed to a problem with gradient formation. The obvious easy fixes were examined (dirty check valves, blocked frits or calibration errors) and eliminated. A closer look at the problem region of the step test revealed a step error, giving further evidence of a proportioning problem. Once the easy fixes were tried, unsuccessfully, the proportioning-valve assembly was replaced and properly to produce results, the repeated step test was successful.

One might question the value of the step test, which has been found to have passed on the present example shows how such tests can identify potential problems before they reach the point that they compromise analytical results.

Jon Gilroy is an analyst at BASi Northwest Laboratory, McMinnville, Oregon, USA. He specializes in LC instrument troubleshooting and his research interests are in LC column selectivity. Jon is the "LC troubleshooting" editor of LC Troubleshooting "Favourite Shortcuts" by John W. Dolan is vice-president of BASi Northwest Laboratory of McMinnville, Oregon, USA; a training consultant for Rheodyne LLC, the LC Resources Training Group, of Walnut Creek, California, USA; and a member of the Editorial Advisory Board of LC•GC Europe. Direct correspondence about this column to "LC Troubleshooting," LC•GC Europe, Advanstar House, Park West, Sealand Road, Chester CH1 4RN, UK.

Readers can also direct questions to the on-line Chromatography Forum at http://www.chromforum.com.

NEXT MONTH in LC Troubleshooting “My Favourite Shortcuts” by John W. Dolan.

This column discusses simple shortcuts and rules of thumb that allow quick estimates to guide method development.