Gas Cylinder Safety, Part II — Set-up and Use

John V. Hinshaw, Serveron Corp., Hillsboro, Oregon, USA.

In last month’s “GC Connections,” John Hinshaw discussed some fundamental issues concerning gas cylinder hazards and presented common-sense precautions that all laboratories should implement. In this month’s instalment, he examines procedures for the safe set-up, use and disposal of compressed gas cylinders in chromatography laboratories.

Compressed gases are the unavoidable companions to gas chromatography (GC). GC carrier, detector and make-up gases must all be supplied to instruments at pressures that are greater than the highest anticipated delivery pressure to the columns and other gas-dependent devices. To attain large stored-gas volumes, gas suppliers sell compressed gases for GC use in a variety of high-pressure cylinders. Pressure regulators act as the intermediaries between cylinder pressures and pressure levels that are compatible with instrumentation. With internal pressures that can exceed 18 MPa (2600 psig), these cylinders present a rapid decompression hazard, as well as flammability, asphyxiation, toxicity and cryohazards. Laboratories that use compressed gas cylinders should implement proper storage, transportation, handling, installation and disposal procedures, and appropriate emergency plans and then train all laboratory personnel and any others who may encounter compressed gas cylinders.

The first step towards the safe use of gas cylinders in laboratories is their restraint in place. The selection and installation of appropriate pressure regulators, fittings and tubing between the cylinders, the gas supply filters and the GC gas inlets are all critical for successful gas safety as well as for performance. After they are operational, gas cylinders require occasional monitoring of the remaining gas pressure until it drops below a useful level. Then, it’s time to disconnect the pressure regulator, return the used tank and install a full one. I’ll examine these issues in detail in this month’s “GC Connections” column. (In last month’s column, I discussed fundamental issues of gas cylinder hazards and described precautions that every laboratory should implement.)

Hooking Up

The most important steps towards safe and effective use of compressed gas cylinders are installing and setting up the cylinder, the associated regulator and the connecting tubing. Gas filters are a separate consideration and one that is beyond the space limits of this “GC Connections” instalment.

Cylinder transport and restraint: Most cylinder accidents occur during transport or are caused by improper restraint. By taking a few simple precautions and following some guidelines, gas chromatographers can prevent all accidents of this type. Although proper cylinder handling does take a few minutes longer than other approaches, the time spent is a necessary cost for attaining the safest possible laboratory environment.

Cylinder transport: Never leave a cylinder standing unrestrained, even temporarily while it’s being replaced or installed. A dual-cylinder cart is handy when exchanging cylinders. Bring the new cylinder on the cart to its location, secure the used cylinder on the cart in the free position, and only then remove the new cylinder and install it. Of course, no one should try to roll a cylinder on its bottom edge any significant distance across the floor. Although it’s necessary to do this to move a cylinder between its restraint and a cart, that’s the limit. It’s also a good idea to wear heavy gloves when moving cylinders. They will keep your hands clean and protect them from minor injuries such as getting fingers stuck between two cylinders.

Restraint: Each gas cylinder must be restrained properly to a fixed object such as a permanently installed bench or the wall of the laboratory. Gas suppliers and other GC supply companies offer a variety of cylinder restraints for different situations. For a temporary set-up, cylinder bench clamps can be installed and removed easily; they can accommodate one or more cylinders. Wall-mounted restraints with chains or straps can be used for more permanent installations. Larger cages and racks are also available. Nevertheless, the objective is to restrain the cylinders so that they cannot be tipped over or damaged while in place. The restraining straps or chain must be adjusted tightly around the cylinders at the proper height. If they are too low, the cylinders could tip over; if they are too high, the cylinders might slip under the restraints.

Cylinder caps: Cylinder caps are designed to protect the cylinder valve and prevent sudden decompression in the event that a cylinder fails or is hit by something. The cylinder cap should remain in place on its cylinder at all times, except when the cylinder is attached to a regulator and is in service. Always attach the cylinder cap before freeing cylinders from their...
restraints. Store the caps in plain sight immediately next to the cylinders as a reminder to use them.

Multiple cylinders: If multiple cylinders are restrained by one device, workers must exercise extreme care to avoid losing control of any cylinder when installing or removing one. It’s best to shut off all the cylinders’ high-pressure valves before loosening the restraints. If a cylinder attached to a regulator must be moved out of the way, the regulator should be detached from the cylinder (see below for a discussion of this procedure) and the cylinder cap must be installed before moving it.

Regulators: Proper regulator selection ensures the safety, purity, flow-rate and pressure stability of gases delivered to an instrument. In general, most GC gas streams require a dual-stage regulator. I highly recommend dual-stage stainless steel high-purity regulators for carrier, make-up and other working gas supplies for sensitive detectors such as electron-capture detectors and mass spectrometers. These regulators are well worth the extra cost. High-purity regulators have been specially cleaned and contain non-contaminating materials that will not contribute extraneous substances to the gas stream. They also do a better job of preventing atmospheric gases from diffusing into the gas stream.

Cylinder fittings: In the US, gas cylinder pressure regulators follow a uniform convention, which is promulgated by the Compressed Gas Association (CGA, Chantilly, Virginia, website address http://www.cganet.com), for the types of high-pressure fittings that connect to gas cylinders. The fittings are designed so that incompatible gas cylinders cannot be connected to the same regulator. For the GC gases, hydrogen, air and carrier gases have different fittings. Other gases not normally encountered in GC such as oxygen or acetylene also have unique cylinder fittings that effectively prevent cross-use of regulators. The European Industrial Gases Association (EIGA) is the related organization in Europe. (For more information see http://www.eiga.org)

Never attempt to change the high-pressure cylinder fitting on a regulator or use an adapter to make a regulator work with gases other than those for which it was originally placed in service. Changing a regulator fitting can result in gas-line contamination in a gas chromatograph. With reactive gases, the result can be much worse. For example, oxygen regulators are specially cleaned to avoid internal combustion of oxidizable contaminants. A non-oxygen regulator pressed into oxygen service can quickly cause an explosion or fire.

Regulator installation: When installing a regulator on a high-pressure gas cylinder, first check the cylinder gas designation and ensure that the cylinder’s fitting matches that of the regulator. Next, check the gas fitting seat in the cylinder for particulate or other contamination. If necessary, blow out the fitting with clean, dry compressed air. Never open the high-pressure cylinder valve in an attempt to clean the fitting seat — it’s a very dangerous procedure that can result in injury. Remembering that some installation and periodically thereafter to identify potential premature failure.

When testing a regulator, first check the high-pressure gauge — it should read between 1800 and 2600 psig (12–18 mPa) for a new cylinder, depending upon the type of cylinder and gas. If the gauge reading is very low, then the cylinder is not full or the gauge is defective. If you obtain a low-gauge reading, the best procedure is to temporarily install another suitable regulator to check the cylinder pressure. If necessary, replace the cylinder or the defective regulator. Never try to replace a gauge on a regulator or repair any other regulator component. Only a regulator manufacturer can do that.

Never try to replace a gauge on a regulator or repair any other regulator component.

Next, observe the outlet-pressure gauge for a few minutes with the outlet valve closed. You should see no observable pressure increase. If the outlet pressure increases when the pressure adjustment is fully withdrawn, then the regulator has a leak from the high-pressure side and must be returned to the manufacturer for repair or replacement. To complete checking the high-pressure side, close the cylinder valve and wait 2 min — the high-pressure gauge indication should not decrease. Any loss of high pressure with the cylinder valve closed also indicates a leak that will require repair or replacement.

With the outlet valve still closed, reopen the high-pressure cylinder valve completely. Adjust the regulator outlet pressure to its operating level, which is usually 40–90 psig (275–600 kPa) for GC gases. If the outlet-pressure gauge rises quickly to a high pressure or if the gauge fails to attain the desired level despite fully increasing the pressure adjustment, shut off the cylinder valve and replace the regulator.

At this point an in-line purge valve can be used to bleed out any air that might have entered the regulator. Open the outlet valve slowly and pressurize the connecting tubing. Bleed gas from the purge valve, if used, until any air is flushed out and then close the valve. The outlet-pressure gauge might drop momentarily, but it should settle back quickly to its set point. As a last step, check the dynamic operation of the regulator by momentarily shutting off the cylinder valve while the regulator is delivering flow. The high-pressure gauge will start to drop as the gas...
Never mix ferrules, nuts and fittings of different manufacturers unless the supplier states specifically that its product is compatible with another supplier’s fittings.

is consumed, but the outlet pressure should be steady as long as at least 2–3 times the outlet pressure remains on the high-pressure side. Restore the cylinder valve to its fully open position. Sometimes it’s convenient to run this test while waiting for the gas lines to be purged of any remaining small amounts of air that entered during installation.

Tubing and fittings: As with all components in the GC supply gas stream, the connecting tubing and fittings must be free of contaminants and leaks, and they must be rated to withstand the highest possible pressure to which they could be subjected in the event of pressure regulator failure. A good estimate to use is at least twice the opening pressure of the safety relief valve in the downstream pressure side of the regulator; this pressure will be greater than the highest outlet pressure that the regulator is designed to deliver. Even so, higher-pressure transients are possible with failure of the high-pressure side of the regulator until the contents of the cylinder have been vented.

Plastic tubing: For the above reasons, GC installations should never use polymeric tubing or plastic fittings. Although these materials are suitable for many liquid chromatography (LC) applications, they are unsuitable for GC use for three reasons. First, polymeric materials can contaminate the gas stream. Atmospheric gases, namely water and oxygen, can diffuse into a gas stream, and the tubing can emit traces of plasticizers. Second, polymeric tubing and fittings could fail and burst at high pressures. Third, when they are routed behind a GC instrument, polymeric tubing and fittings can be exposed to the high-temperature air exhaust from a GC oven that is cooling down, and this exhaust could cause an immediate tubing failure or at least weaken a section of the tubing.

Aluminium tubing: I’ve seen a few installations that use aluminium tubing. Although possibly less expensive than copper or stainless steel, aluminium lacks the ductility of other metal tubing materials and it will rapidly develop metal fatigue cracks and failures unless mechanically constrained. The majority of GC gas supply installations will flex the connecting tubing during tank changes, and some gas chromatographs will flex external connecting tubing when their top covers are lifted. In addition, aluminium tubing does not fare well in swaged fittings that must be disconnected and reconnected. **Copper tubing:** Copper is by far the most commonly used GC tubing material. Rolls of specially cleaned copper tubing are readily available from GC manufacturers and supply houses, making this the most convenient way to obtain suitable material. Copper tubing withstands the kind of flexing encountered in normal GC use. It can be uncoiled and coiled again easily for storage, and swaged fittings on copper tubing can be reconnected many times, if operators are careful to avoid overtightening the fitting and distorting the threads or ferrules. Copper tubing is best cut with a rotary blade tool designed for that purpose, and this tool can be purchased from any tool supply company. Never use a manual saw, pliers or diagonal cutters to cut tubing for GC purposes and never try to flex the tubing until it breaks from fatigue.

Stainless steel tubing: Many gas chromatographers prefer stainless steel tubing for critical applications. It is more rigid than copper and its spring properties allow it to better withstand limited flexing. Because of its hardness, however, stainless steel is more susceptible to leaks from minor imperfections on swaged fitting sealing surfaces. Stainless steel is more difficult to cut properly; it will quickly dull the rotary-type tools that can be used with copper. Instead, use a high-speed cutoff saw or other tool designed for use with stainless steel. Specialized deburring and dressing tools will prepare tubing ends that are square and free of scratches. After cutting, the tubing must be flushed with clean solvent to remove particulate residue and then thoroughly dried.

Fittings: Always use swage-type fittings for GC applications. Quick-disconnect, soldered, pipe compression or flared fittings are unsuitable. Permanently installed stainless steel tubing can be welded but it is more convenient to use discrete fittings instead for the smaller tubing sizes commonly encountered in GC.

Removing and Returning Used Cylinders

When the residual cylinder pressure drops to less than approximately threefold the regulator-outlet pressure, which is approximately 250 psig (1.7 MPa), it’s time to replace the cylinder. Don’t allow the internal cylinder pressure to go to zero; it will force the gas supplier to perform extra cleaning on the cylinder because they cannot assume it has not been contaminated. In addition, running down the cylinder pressure will cause the ferrules, nuts and fittings of different manufacturers unless the supplier states specifically that its product is compatible with another supplier’s fittings: the only result will be a leaking connection. In any one laboratory, it’s a good idea to keep only one type of swaged fitting on hand to avoid a mix-up.

Try to match the fitting and tubing materials. The easiest way to remember is to match the colour of the ferrule, fitting and tubing. Use stainless steel for stainless tubing and brass for copper tubing. Brass fittings will also work with stainless steel because the softer brass ferrules will deform and make a seal but this arrangement could fail when reconnected several times. Stainless steel ferrules will not work as well with copper tubing because the ferrules will tend to crimp the tubing instead of forming tight seals to the inside of the receiving unions or bulkhead fittings.

Don’t overtighten swaged fittings. In general, use two wrenches — one to turn the nut and one to restrain the union — and tighten a new fitting assembly approximately one-half turn beyond finger tight and then check for leaks and retighten if necessary. It’s best to follow the individual manufacturer’s recommendations for fitting tightening. For a reconnected fitting that’s assembled onto an original union, only one-quarter turn may be necessary. Never try to force a fitting to seal by continuing to tighten it with a bigger wrench; you’ll only ruin the nut and the union or bulkhead fitting. When in doubt, it’s better to cut the tubing and make a new connection. Never apply any type of lubricant, sealant or polyfluorocarbon tape to the sealing surfaces of a swaged fitting — they’re designed to seal with a close metal-to-metal contact. It is appropriate to use one layer of polyfluorocarbon tape on the threads of a bulkhead union in which the threads form the seal. Wrap the tape flat around the fitting once in the opposite direction of how the fitting will be installed.
regulator’s outlet pressure to first increase slightly and then drop off towards zero, which will cause retention-time and detector-stability problems. First, bring a new cylinder into the laboratory and then swap the old and new cylinders as described below.

The pressure regulator must be relieved of internal gas pressure before it’s disconnected; otherwise a regulator could give a sudden burst of gas. First, turn the GC thermal zones off and allow them to cool. Turn off the detectors as well. Then, turn off the high-pressure cylinder valve and allow both the high-pressure and outlet-pressure gauges to approach zero. It might be necessary to bleed off gas at the gas chromatograph by increasing a flow or pressure setting temporarily. Next, turn the pressure adjustment on the regulator fully off and close the regulator outlet valve. Turn the GC flow and pressure settings to zero to prevent air from back-diffusing into the gas lines and filters. Finally, loosen and remove the regulator from the gas cylinder and install the cylinder cap.

Carefully secure the regulator while exchanging the cylinders. A small strap or chain works well to hold it onto a neighbouring device, or just place it on a flat surface. Don’t leave it hanging by the connecting tubing — it will stress the tubing and could allow the regulator to fall some distance and be damaged.

If a regulator will be removed from use, even for a day, it should be detached from the connecting tubing and stored in a dust-free environment. If gas filters are in-line, be sure they are filled with gas and then seal the filters’ inlets and outlets before exposing the gas supply lines to open air.

Return used cylinders promptly. Keeping empty cylinders on hand in a laboratory will accumulate cylinder demurrage charges and waste space that could be put to better use.

Conclusion
Laboratory workers can ensure high-pressure gas cylinder safety by following a few simple procedures and installation guidelines. Proper cylinder restraint, appropriate regulator installation and operation, and suitable connecting tubing and fittings will all yield improved safety and better GC results. Cylinder transportation seems to be the most hazardous part of gas handling in laboratory environments. Perhaps the hazard is caused by simple carelessness and a rush to get the instruments up and running again, but the potential cost and effect of failing to follow safe procedures far outweigh the loss of a few minutes of productive laboratory time.

Reference

“GC Connections” editor John V. Hinshaw is senior staff engineer at Serveron Corp., Hillsboro, Oregon, USA, and a member of the Editorial Advisory Board of *LC•GC Europe*.

Direct correspondence about this column to “GC Connections,” *LC•GC Europe*, Advanstar House, Park West, Sealand Road, Chester CH1 4RN, UK, e-mail: dhills@advanstar.com

For an ongoing discussion of GC issues with John Hinshaw and other chromatographers, visit the Chromatography Forum discussion group at http://www.chromforum.com